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ABSTRACT 

A Neutral Beam Apparatus has been built for the Goddard Space 

Flight Center for the purposes of studying the effects of medium energy 

neutral particles on upper atmospheric sensors and test  surfaces. The 

apparatus consists of an atomic beam source, a source chamber, a 

velocity selector, a torsion balance and ancillary electronics and pumps. 

Testing has been carried out and the system was installed a t  Goddard 

Space Flight Center. 

Sputter acceleration studies with oxygen and nitrogen were made 

Forces for the for bombardment voltages f rom 500 volts to 5000 volts. 

total beam flux were obtained of -10 

particle flux of ~ 1 0  atoms/cm sec. The velocity selected beam measure- 

ments indicated that the average particle energy was above the 10 cm/sec  

velocity capability of the selector; however, selected fluxes of monoenergetic 

-2 2 
dynes/cm , representing a neutral 

'17 2 
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'. 
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beams were obtained with densities of 3 to 8 x 10 particles/cm sec. 
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I. INTRODUCTION 

This report discusses the experimental work performed in a program 

It is related 
t 

of equipment development for  the Goddard Space Flight Center. 

to a previous program aimed at  the generation and investigation of medium 

energy neutral atomic beams (NAS5-9083), a s  a means of simulating the 

bombar'dment experienced by spacecraft instrumentation from low energy 

(1 to 10 eV) neutral atoms. 

A major objective of the present program was to measure momentum 

transfer f rom such beams using a torsion balance technique a s  a means 

of beam calibration. The ear l ier  program was hampered by the lack of 

an  absolute measurement technique for determining the number density 

of the beam. 

as well as to improve beam detection sensitivity. 

accomplished by altering the velocity selector so as to broaden the velocity 

window observed at any one velocity setting. 

the equipment constructed was supplied to the Goddard Space Flight Center, 

where it was installed and set  in operation. Under the contract an instrument 

manual is provided for operation and maintenance of the neutral beam system. 

I 

The present effort was aimed at correcting this deficiency 

The latter task i s  
'e 

Upon completion of the program 
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11. METHOD OF APPROACH 

The method of approach in this contract was principally the design 

and construction of special torsion balances, which were used to measure 

momentum transfer in the beam, Quartz torsion balances with atomic 

traps were used as the detecting medium. In addition, the contract monies 

were used to improve construction of certain of the atomic beam components 

and to improve system operation and testing. 

Other special modifications were made in the beam system. New 

velocity selector disks were designed and placed in operation which provided 

an energy spread in the velocity selection of 10% a s  opposed to the original 

270 previously used. 

accomplished by reducing the number of teeth in the selector, hence, 

allowing wider side bands to pass. 

This modification in velocity selection accuracy was 
t 

The main chamber was disassembled 
'- and the new flanges for the quartz balance and ionization tube were heliarc 

welded into place and the whole system reassembled into operating form. 

Other added components include a new liquid nitrogen cold t rap  f o r  

the crystal mount. 

diaphragm so that the crystal may be turned to the side o r  up and down 

through 2 5O with respect to the axis of the beam. 

constructed so that there i s  an air outlet right a t  the back of the crystal  

surface which provides better liquid nitrogen venting to insure maximum 

cooling to the crystal. 

is secured to one end of the glass cylinder vacuum chamber. 

This cold trap is now suspended on a stainless steel 

The cold t rap was 

The in-vacuum angle adjustment of the crystal  holder 

A new gas inlet has been constructed to feed the nitrogen and oxygen 

directly into the plasma region so that the gas discharge is confined about 

the crystal surface. 

tank which can be used to block o r  deflect the beam. 

panel has also been installed in the beam. 

the panel the metastable population of the beam can be reduced. 

A "floating gate" has been installed on the top of the beam 

AOmetastable quenching 

When a high potential is placed on ' 

. 
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The tes t  stand with water cooling, drain, and r. f. shielding has 

been reconstructed and put into a form which is more  permanent. 

auxiliary electronics have also been built into the system. 

Additional 

A 5000Vdc - 200 mA power supply was designed and built for the 

system. 

of the cold finger target. 

This power supply is used a s  the main ion bombardment control 

The following additions and modifications summarize. the changes 

made in the equipment under this contract: 

1. 

2. 

3. 

Two cold traps attached to the diffusion pumps; 

An ionization gauge built into the system; 

A modified liquid nitrogen cold trap for the crystal mount 

which p'rovides for larger liquid nitrogen reservoir;  

4. 

5 .  

6. 
7. 

8. 

9. 
10. 

11. 

A new gas  inlet, valve and gas-directing nozzle; 

A floating gate in the beam path for charged particle 

deflections ; 

A metastable quenching panel; 

0 - 5000 Vdc 200 d p o w e r  supply; 

Vane modification for the velocity selector; 

Flange and 61 cm "double tough" pipe for quartz balance; 

Quartz balance angle indicator and collimator; 

Various quartz balances and vanes. 

_ -  ,- 
I__ ~ 

- 

Figure 1 shows the location of these various components on the 

existing equipment. 

glass housing and the floating gate. 

as modified. 

Figure 2 i s  a photograph of the quartz balance flange, 
P Figure 3 i s  a full view of the equipment 
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Floa t ing  Gate 

Gas In l e t  System 

MODIFIED SYSTEM WITH QUARTZ BALANCE, 

FLOATING GATE, AND IONIZATION GAUGE 

Figure 2 
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Ionization C3uge Control 

\ LN Cold Trap 
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Pumps to Glass Flanae Test S t  and 
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COMPLETE NEUTRAL BEAM SYSTEM 

Figure .3 

6 

Crystal 
Mount 



I 

' .  

111. QUARTZ TORSION BALANCES 

The quartz balances were constructed of quartz fibers ranging in 

size f rom 20 to 50 microns in diameter. 

point. 

serves  a s  a detector element. 

One end is attached to a stationary 

The free end of the fiber i s  attached to a quartz c ros s  b a r  which 

On one end of the bar  is a small  metal  cone. 

The cone i s  placed in  the neutral particle beam and is deflected by the 

beam in proportion to the momentum transfer which takes place. 

manually imposing torsion on the quartz fiber to compensate for the cone 

deflection by the beam, we have a means of measuring the particle energy 

density. 

of the dimensions of specific balances. 

By 

Figure 4 shows schematically the arrangement used and some . 

t 

The actual'targets on the quartz balance were' of several  designs. 

Initially, flat metal plates were used but these were discarded when their 

accuracy could not be insured since the accommodation coefficients are 
not known. Another design involved the use of what can be called "atom 

traps". 

aluminum sheet. 

and depth of 1.2 cm, 

several  times from the surface and give up most of their  translational 

energy before escaping. 

'- 

This design was simply a cone constructed f rom very light 
2 

The cone had an open base approximately 1 cm in a rea  

Atoms impinging on this hollow cone would be reflected 

This would reduce e r r o r  due to rebound. 
f 

Another "atom trap" consisted of a very lightweight porous foam 

The foam glass surface presented an extremely rough surface. glass.  

surface consisted of little cells which provided a trap-mechanism which 

lowere'd the probability of rebound. 

was to get the atoms to come to thermal equilibrium before leaving the 

surface. 

f rom the forces measured. 

The 

The pr imary object of the atom t rap  

Such a target design could permit a measurement accuracy of 10% 

All of the design developments culminated i n  a quartz balance which ' 

was built with a 20-micron diameter quartz fiber. 

built in the following manner. 

into a rigid circle having a diameter of 6 .  2 cm. 

The balance a r m  was 

A fine 0. 010 inch tantalum wire was formed ' 

One side of the tantalum I 
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ring was attached to the lower end of the quartz fiber. The ring was then 

suspended in a vertical position and at the extreme horizontal distance on 

the ring 1-cm plates were attached. 

lightweight foam glass which acted a s  the balance plates on which the neutral 

beam impacts. 

greater  share of the neutrals and thereby reduces the influence of reflected 

particles on the measurements. 

attached to it; this is used to permit magnetic control with a magnet outside 

the vacuum chamber. 

balance to res t  so that the target was perpendicular to the beam axis. 

neutral beam would then be permitted to strike the balance plate and the 

forces could then be determined as a function of angle of movement. 

quartz balance a s  designed showed a force of one dyne per  9 . 6  

2 
The target plates were made of 

The rough-sawed glass surface is believed to capture a 

One of the plates has  a small metal bar  

Forces  could be measured by permitting the torsion 

The 

, 
The 

0 
rotation, 

Using nitrogen and a thin graphite plate as the bombarding target, 

Currents of 50 mA/cm 
2 

many tests  were made with the velocity selector. 

f rom 500 volts to 5000 volts were used for velocity selector speeds of 

1 through 10 x 10 cm/sec.  
5 

I 
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IV. EXPERIMENTAL RESULTS 

The initial balance was constructed using a 50 micron quartz fiber 

and a 0.3 millimeter quartz rod for the balance crossarm,  and 0.0025 inch 

sheet stainless steel to make the 1 x 1 cm vane and 1 cm diameter cone. 

The quartz par ts  were epoxied together and the vane and cone were attached 

to the balance bar. 

quartz fiber was inserted through a plate via a quickcouple. 

the vertical  adjustment as well as a horizontal movement. 

Figure 4. 

A stainless steel rod with a hook to hold the top of the 

This allowed 

Please see 

A stationary vane, identical to the vanes of the velocity selector, 

was placed in the system for initial testing of the beam force on the balance. 

A plexiglass plate was placed at the end of the pyrex tee to allow visual 

sighting of the balance vanes for accurate alignment. 

was used to control the beam reaching the balance. 

the opposite end of the balance bar, the balance equations include: 

. 
A beam deflection gate 

'* Assuming no force at 

(3)  

- P r 1 6 4  

T d 4  G 
- 

radians 0 

64 P kr2 
G 7 d 4  

s =  
cm 

- G 7fd4 s 
2 P 

gram- 64 1 r 

where: Q, in radians of arm rotation 
P in grams force 
l! in cm - length of fiber 
r in cm - arm length 
d in cm - fiber diameter 
B in cm - distance of arm end movement 

G in grams/cm = modulus rigidity 
2 
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Testing the system as described resulted in measurable forces in the 

dyne range. To increase sensitivity, i t  was decided to construct 
-3 loe2  to 10 

Balance #2 using mica vanes 1 x 1 cm and a reduced quartz fiber of 30 microns 

diameter. 

increased amount of shielding was added around one end of the balance upon 

In addition to changing the diameter of the quartz fiber, an 

which graduations were provided f o r  measuring movement. 

for this construction indicate a balance sensitivity of 10 

travel of the arm. 

The calculations 
-3 

dynes per 0.61 c m  

Using Balance #2 the following results were obtained: 

Voltage Cur rent s (cm of vane movement) 

1,000 17 mA 2. 25 to 2. 5 c m  
1,500 18 mA 3 to 3.25 cm 

19 mA 3. 5 to 4 c m  
19 mA 4. 5 to 5.0 cm 

2,000 
2,250 
2,250 26 mA 6.0 cm 

I 

A 6 centimeter vane movement is caused by a force of approximately 
-2 16 2 

10 dynes. This is about 10 particles/cm sec f lux .  Plot I shows the results 

of forces obtained for sputtering energies from 500 volts to 2, 500 volts. 

A third balance design was constructed with 20 micron quartz fiber 

and calibrated by the pendulum period method. 

is 42. 5 centimeters long with a 3.7 centimeter radius crossarm.  

calibration of this by the equations given above show that a force of 10 

will move the c rossarm a distance of 4. 78 centimeters. 

sensitivity is very close to the sensitivity we wish to obtain. 

The 20 micron quartz fiber 

The 
- 3  

dynes 

This range of 

A second calibration was performed by observing the harmonic motion 

of the torsion balance, The equation for this motion is: 

2 2  - -  - ' - 4 T n  I 
T1 
e 

1 
T =  
e =  
n =  
I =  

restoring force 
angular displacement 
frequency 
moment of enertia 
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The moment of enertia is changed by adding known weights to the ends of 

the torsion c rossarm and the resulting harmonic motion can then be used 

to determine the restoring force,T . 1 

: 
The problem of electrostatic interference affecting the quartz balance 

vane was encountered with the 20-micron balance. 

over the velocity selector motor in an attempt to reduce the electric field 

produced by the motor armature. On the top of this housing was fastened 

a magnetic iron plate of approximately 1/4-inch thickness to shield the 

quartz torsion arms. 

to a negligible level. 

A shield was placed 

This arrangement reduced the effect of the motor 

Force measurements were made with one stationary velocity selector 

vane in the beam path for collimation purposes. 

balance rotates through 70 to 90 degrees when sputtering voltages of 2000 o r  

The 20 micron torsion 

17 2 
3000 volts a r e  used. These forces indicate a flux of 10 neutrals/cm sec 

and were so large that it was not reasonable to attempt to make any exact 

measurements with this balance. When forces f r o m  the beam a re  measured 

after passage through the velocity selector the flux level drops and a motion 

of only a few degrees is observed. 

recorded in centimeters and i s  proportional to a precaiibrated force. 

In these measurements, movement is 

The data obtained with the 20 micron fiber balance was severely 

limited by the difficulty of taking measurements in the presence of the 

vibrations caused by the high speed velocity selector. Only limited time 

was available for the measurements and the data was scattered and cannot 

be assumed valid without further measurements. Table I shows some of the 

measurements taken and values obtained. 

TABLE I 
2 P. V. (cm/sec)  S.V. (volts, mA) F (dynes/cm 1 

2500 V, 40 mA 3. 14 5 
5 

5 x 10 
5000 V, 40 mA 6.28 x 6 .2  x 10 
5000 V, 50 mA 

7.4 x l o 5  3000 V, 12 mA 6.7 x 
8 x 1 0 5  2700 V, 8 mA 6.9 x 
9 x 10 2500 V, 35 mA 5.2 x 10 

12.1 
- 4  

7 x l o 5  5 

2 
Flux (n/cm sec) 

13 2.8 x.1013 
4.34 x l o l 3  
7.4 x l o l 3  

3.7 x l o l 3  
3 x 1 0  , 

3.8 . x  l o l 3 ,  

13 



The particle velocity, P. V. ,  was determined by the rotational 

values of the velocity selector. The sputtering values, S. V. ,  were the 

bombarding parameters. The force, F, was the value measured by the 
2 

movement of the 1 c m  balance vane. The flux was the calculated number 

of particles arriving per  second at  the 1 cm vane, assuming atomic 

nitrogen and a perfect accommodation of the fast  particles. These values 

were not taken under optimized conditions, but show the initial results of 

the velocity selected beam. 

2 

It was found that large forces a r e  recorded on the quartz balance 

when the velocity selector was removed with only one stationary selector - ,- -_- - 
blade remaining in place between the source and the balance. 

static o r  vibrationk effects associated with the velocity selector that 

interfere with an accurate measurement of the forces were investigated. 

Several steps were taken in an attempt to minimize these effects on the 

quartz balance. 

The electro- 

. 

An all metal torsion balance was built and placed in operation in 
iI. the system. A 0.003 inch tantalum wire was used for the balance and was 

placed in an identical position to the quartz balance and tested for electro- 

static effects. 'At the lower velocity selector speeds no eiectrostatic effects 

were observed. It was, therefore, felt that grounding the balance should 

be accomplished. 

The full torsion balance assembly was platinum plated. This was 

accomplished with some difficulty because of the fragile nature of the balance. 

When an electrically grounded balance was put in operation, the electrostatic 

effect seemed to be eliminated at low speeds, i. e . ,  below 30, 000 rpm. At 

certain velocity speeds above 30,000 rpm the errat ic  behavior of the balance 

occurred again. 

quartz balance i s  due to harmonics of the vibrational modes produced by the . 

velocity selector motor and rotational motion. 

1 

It is now considered that some of the disturbance of the 



5 
Preliminary measurements show that a t  30,000 rpm (7.5 x 10 cm/sec  

particle velocities) definite and measurable forces are recorded on the balance. 

It is suspected that the major portion of the sputtered flux may have energies 

above 6 o r  8 eV. 

would indicate that the low energy tail of the number vs. energy curve of the 

sputtered particles may be too low to produce dense beams below 5 eV. 

Special techniques to lower the energy of the sputtered beam a r e  feasible, 

however. 

t 

We cannot a t  this time say definitely if this is true; this 

. 

An abstract  entitled, “Monatomic Oxygen and Nitrogen Beam Apparatus 

for the 1 to 10 eV Range, I’ was written in anticipation of submittal of the paper 

to the Fifth International Conference on the Physics of Electronic and Atomic 

Collision. This paper has been attached as an appendix. 
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V. SUMMARY AND RECOMMENDATIONS 

The experimental effort to measure the total flux densities by the 

use of torsion balance momentum transfer detectors was only partially successftX-- 

due to unexpected problems and instabilities of the torsion balance. 

accurate measurements were obtained for the total beam which included 

the total spectrum of velocities. 

using the velocity- selector, only indications of the presence of forces were 

obtained, but no, reliable data.can be reported. 

Fairly 

When subsequent measurements were made 

It is believed that the most effective way to continue this work ant# 

determine the total parameters of the system requires the use of a mass 

spectrometer. 

at the source and accelerated through the velocity selector; thus, providing 

velocity, mass, and flux density determinations. 

The spectrometer should be calibrated with ions produced 
* 

1 '  I 
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MONATOMIC OXYGEN AND NITROGEN BEAM APPARATUS 

for the 

1 to 10 eV RANGE 

Dense beams, composed primarily of monatomic oxygen and nitrogen, 

a r e  being produced at energies from 1 to 10 eV. 

energetic atoms is generated by sputtering condensed layers of gases from 

an in vacuo cold ,finger surface. 

a velocity selector to provide a sharp velocity spectrum. 

fluxes of 10 a toms/cm sec a r e  obtained over an a rea  of 2 cm . 

A continuous beam of 

The sputtered atom beam is passed through 

Resultant beam 
15 2 2 

The apparatus is designed with a copper single crystal, crystallograph- 

ically oriented s o  that the close-packed atom rows a r e  aligned parallel to 
9 

the desired beam direction. The crystalline substrate causes the condensing 

gas to form, a t  least  in  part, an epitaxial layer over the crystal. Subsequent 

ion bombardment of these layers results in preferential ejection of atoms 

directed along the close-packed lattice rows. 

energies one and two orders  of magnitude above thermal. 

sputtering a re  drawn from, a plasma generated by r. f. field coils placed 

about the glass chamber. 

* 
'. 

The sputtered atoms have 

The ions for 

Negative potentials between 500 and 4000 volts 

are applied to the crystal and the positive ions a r e  drawn directly to the 

crystal  surface. The gas for  the plasma and condensed layer is emitted by 

a needle valve into the first chamber where the pressure  is maintained at 
- 4  

-4 to 6 x 10 & Hg. 

The condensed atoms which a r e  sputtered f rom the crystal surface a r e  
Z 

ejected axially through a 1 x 2 cm copper tube. 

o r  three centimeters f rom the crystal surface. 

plasma from the path along which the fast. neutrals t raverse  towards the 

detector, 

in the plasma were efficient in  detaching electrons from the fast neutrals. 

The tube is placed within one 

The tube suppresses the 

This was found necessary because charge-ekchange processes 

* Several authors have published results including: G. K. Wehner, J. Appl. 
Phys., 25, 270 (1954); Phys. Rev., 114, 1270 (1959),; and V. I. aVeksler, 
Soviet Phys. (JETP),  11, 235 (1960). 
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* . .  

The plasma-neutral interactions also produce excited states, and the spacing 

between the crystal  and suppressing tube can be varied to limit these effects. 

The sputtered neutrals s t ream next into the velocity selector chamber. 

Velocities can be selected by varying the rotational speed of the chopper. 

The velocity selector chamber is differentially pumped by diffusion pumping 

at a rate of 700 l i ters /sec.  

chopper, a s  well a s  the thermals which diffuse through the 1 x 2 c m  tube, 

a r e  removed by this first pump. The fast  neutrals which have the proper 

Those particles which a r e  deflected by the 

velocity to pass through the selector enter a J x 2 cm slot to the final 

chamber. 

pump. 

6 x  10 rnmHg. 

This chamber is pumped by a second 700 l i t e r / sec  oil diffusion 

The pressure of this region during beam operation remains at 5 to 
- 6  . 

The beam is monitored by a cross-electron type detector housed in 

, the tube extending into the velocity selector chamber. 

the number-density drom which the calculated flux density of the beam is 

determined. 

potential measurements. 

the absolute energy-density of the beam. 

The detector measures  

The energy of the fast ions i s  determined by retardation 

Quartz torsion balances a r e  used to determine 

The beam particles a re  predominately the atomic species of oxygen and 

nitrogen. 

population of metastables in  the beam. 

beam is planned for investigating collision processes  in the 1 to 10 e V  energy 

range. 

A study of excited states indicates the presence of a substantial 

Future refinement and use of the 
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